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A Possible Explanation of the J, Separations in Intermediate Plagioclase
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The 6, ‘separation’ in intermediate plagioclase varies with composition as the reciprocal of the
average run length of the major constituent in a two-element random run sequence containing
N A’s and N B’s, where « is the proportion of tetrahedral sites occupied by Al. The case corre-
sponds to virtually complete short-range disorder in at least one direction.

Empirical relations between da, 6» and o,

The subsidiary reflections of intermediate plagioclase
are the subject of a careful, thorough study by
Gay (1956), who has shown that the displacement
of subsidiary from principal layer lines is virtually
a linear function of composition in the range
20 < An < 75. Following terminology already estab-
lished, Gay designates the ‘separation’ of a subsidiary
layer line from the next underlying principal layer
line along a crystallographic axis by 0z, 0o or Oc,
depending upon the axis in question. He records the
average ‘separations’ in degrees of reciprocal space,
and an examination of his tables and graphs indicates
that the interrelationship of these distances is both
close and simple.

In 19 specimens Gay was able to measure both
da and &y, in 23 he obtained both d, and &, and for
21 he records both &, and 6. He concludes that
‘... 8, and &y are linearly dependent on é.’, but gives
no reason for choosing . as independent. In any case,
the linear correlation between all three pairs of
subsidiaries is extraordinarily high.

The purpose of this note is to point out that the
variation of the spacing of d.—the best resolved or
most frequently observed of the subsidiaries—is about
what would be expected if it were controlled by the
average run lengths of Al and Si at complete short-
range disorder.

It is at first sight rather puzzling to find that one
of these closely correlated subsidiaries follows such a
rule while the other two do not. In some experimental
work stimulated by Gay’s data I have found that
subsidiary reflections do indeed occur in diffraction
patterns of masks representing disordered or short-
range-ordered distributions of stacking faults in
layered structures, and that the locations of the sub-
sidiaries differ greatly in the two cases (Abelson, 1957).
These masks are not adequate models of the Al-Si
situation in feldspar, but it may be pointed out that
in the run model the existence of a certain level or
type of ordering in one direction imposes no restric-
tions on (and conveys no information about) ordering
in any other direction. There is no reason for all three

subsidiaries to behave similarly unless ordering is the
same along the three principal directions.

The run model of short-range disorder

Suppose that the points of an ordered point lattice
are to be populated with 4’s and B’s, the number of
points being N, of A’s Nx, and of B's N§, o« < 8 =
1—«. The distribution is to be random in the sense
that the probability of any site being taken by an
A4 is «, and, similarly, Pr(B) = . Defining a ‘run’ as
a sequence of like items bounded at each end by an
unlike item, information about the distribution of A’s
and B’s on the lattice may be summarized in terms
of the number of runs, the distribution of run lengths
in 4 and B, and the average run lengths in 4 and in B.*
It is these averages which can be used to predict the
d, separations.

Average run length at disorder

Since N is always very large we can take advantage
of some simple large-sample approximations.

For N sufficiently large, the probability of a run
of length ¢ in 4 is (Hald, 1952, pp. 343-4)

Pr (rg) = poa. (1)
The expected number (d,;) of such runs is
E(dy) = Nf2', (2)

* Readers acquainted only with discussions of short-range
ordering based on ‘interpenetrating lattices’ may like to know
that the number of runs is the same as the number of ‘right
pairs’ of the more usual formulation, that every run of length
% contains (¢— 1) ‘wrong pairs’, so that, if f4(¢) is the frequency
of runs of length ¢ in A4, the number of wrong pairs in 4 is
2(i—1)f,(4), and similarly for B. Proceeding in this fashion
one finds that at complete disorder there are No? wrong pairs
in 4, NB? wrong pairs in B, and 2N«f right pairs. At perfect
short-range order, defined, as usual, by the absence of wrong
pairs in A, there are N(1—2x) wrong pairs in B and 2N«
right pairs. The order parameter most similar to that used in
the model based upon interpenetrating sublattices is the
proportion of runs of 4 which are of length 1, a quantity
which varies from § at complete disorder to 1 at perfect short-
range order. In the run model there is no a priori relation
between long- and short-range ordering.
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and the expected number of runs of all lengths in
A is
E(d,) ¥ N3 &' ~ Nfx . (3)
1

Since Now A’s are to be distributed among an ex-
pected number Nfw of runs, the average or expected
run length in 4 will be 1/4. From symmetry we also
have 1/x as the expected run length in B.

«, # and 7 for Al and Si in disordered plagioclase

In pure albite one-fourth and in pure anorthite one-
half of the tetrahedral sites are taken by Al. Letting
Al = A and Si= B of the preceding section, and
designating the composition of any plagioclase by the
mol fraction An calculated from its analysis, we have
that

& = (An/2)+ (1—An)/4 = (An+1)/4.

Accordingly, E(iz) = «~! = 4/(An+1) at complete
disorder.

Gay records dc in degrees of reciprocal space, but
as runs, run lengths, etec., are more readily thought of
in direct space, we convert by finding 3608, for each

specimen. The results compare with E(ig) calculated
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Fig. 1. §, separations as a function of §i run length., X =
E(ig) = «™, ¥ = 3600;. (Line 4: Y = X; line B: line
of best fit caleulated from Table 1, ¥ = 1:052X —0:222.)

from the analyses as shown in Table 1 and Fig. 1.
If the quantities 360 6;* and E(ip) were estimating
the same parameter, the line of best fit would be
characterized by an intercept not differing significantly
from zero and a slope not differing significantly from
unity. The equation calculated from the data is

Y = 1-052X~0-222, and in fact neither constant
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differs significantly from its expected value. Consider-
ing the difficulty of making measurements of this sort,
the ever present uncertainties about analysis, and the
possibility that some of the discrepancies are real,
the fit is on the whole excellent. To a remarkable
extent the ‘repeat distance’ calculated from the &,
spacing behaves as if it were governed by the same
rules which determine average run lengths in a run
sequence characterized by short-range disorder.

Table 1. Gay’s data (An, &), «, E(is) and 360 57t
Jor intermediate plagioclase

An 8e o« E@g)=o0"t 3605,
73 165 04325 2-312 2182
70 163 0:4250 2-353 2209
67 157 0-4175 2-395 2278
64 159 0-4100 2439 2-264
60 146 0-4000 2500 2-466
58 151 0-3950 2-532 2-384
56 141 0-3900 2564 2-553
55 148 0-3875 2581 2433
53 145 0-3825 2-614 2483
53 145 0-3825 2-614 2483
51 138 0-3775 2649 2-609
50 141 0-3750 2667 2553
50 139 0-3750 2667 2590
47 132 0-3675 2721 2727
46 132 0-3650 2740 2727
45 136 0-3625 2759 2-647
45 136 0-3625 2759 2-647
41 132 0-3525 2837 2727
40 125 0-3500 2857 2880
38 128 0-3450 2-898 2-812
38 125 0-3450 2898 2-880
37 121 0-3425 2:920 2:975
35 128 0-3375 2:963 2812
32 113 0-3300 3-030 3-186
30 118 0-3250 3077 3-051
30 120 0-3250 3-077 3-000
23 121 0-3075 3-252 2:975
22 120 0-3050 3-279 3-000
17 100 0-2925 3-419 3-600

In most cases the observed repeat distance is a
little less than the average run length. The average
discrepancy could be eliminated by supposing that
the arrays are in fact not completely disordered. In
the region for which data are available the required
shortening of the expected repeat distance would be
produced by an increase in the numbers of runs and,
accordingly, in the numbers of right pairs, of some
6% over that characteristic of complete disorder.
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